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Abstract. The Koch curve evolves from a base equilateral triangle by the trisection of each 
side and the replication of the original triangle on the mid-section, the process being 
repeated ad infinitum by the addition of sets of successively smaller trangles. This process 
is generalised to replace the trisectioning by (2k+ 1)-sectioning. It is shown that a square 
is the only other regular polygon on which the (2k+l)-sectioning procedure can be 
implemented. The Koch curves thus generated are strictly self-similar, their fractal 
dimensions being similarity dimensions and enclose simply connected areas. Randomisa- 
tion of the generating procedure is also discussed. 

The Koch curve (von Koch 1903/4,1906) is one of the earliest examples of the so-called 
monster curves: while it is of infinite length, it encloses a simply connected region of 
finite area in the xy plane. The method of constructing the Koch curve is as follows 
(Mandelbrot 1983). Take an equilateral triangle and trisect each of its sides; then, on 
the middle segment of each side, construct equilateral triangles whose interiors lie 
external to the region exclosed by the base triangle and delete the middle segments of 
the base triangle. This basic construction is then repeated on all of the sides of the 
resulting curve, and so on ad nauseaum. The curve is defined so that the areas of all 
triangles lie inside it and it should contain nothing else; the perimeter is the length of 
this curve. If r = 0 denotes the stage of evolution when only the base triangle of unit 
side is there, r = 1 denotes the stage when three triangles of side 4 have been added, 
etc, then it can be easily seen that the perimeter P, of the Koch curve at the rth stage 
is 

P, = (4/3)'P,. 

The perimeter grows unboundedly as r increases, but the area A, included by the curve 
at the rth stage is 

A , = A o  l + i  4'3-2'). ( i s ( l , 2 .  . . I )  

As r + a ,  A,+fAo and is very much finite. Now, the number of the straight line 
segments making up the curve at the rth stage is four times that of the line segments 
making up the curve at the ( r  - 1)th stage, but the segments become three times smaller 
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in size. Hence, the fractal (similarity) dimension of the Koch curve turns out to be 
D=log(4)/log(3). An alternative construction of the Koch curve is given by Singh 
(1927) where it has been shown that the Koch curve corresponds to a multiply valued 
function y = K (x), which can be parametrically expressed (Kaufmann 193 1) as x = [( t ) ,  
y = + ( t ) ,  both [ ( t )  and + ( t )  being single-valued and continuous functions of the 
parameter t .  

The point to be noted here is that an equilateral triangle is simply a regular trigon. 
Thus if, in the construction procedure of the Koch curve, the ‘equilateral triangle(s)’ 
are replaced by ‘regular n-gon(s)’, a set of generalised fractal curves may be obtained. 
Furthermore, the ‘trisection’ of each side can be replaced by other equipartitioning 
schemes. Even more generalised Koch curves may then result. These are the 
possibiliities we will explore in this comment. 

First of all, let us simply replace the equilateral triangles by regular n-gons, while 
the evolution of the curve still takes place by trisecting each straight-line segment. The 
angle included by the two consecutive sides of the base n-gon must be G ~ / 2 ,  or else 
a simply connected curve would not result as the construction procedure continues. 
This restricts the choice of the n-gon to either an equilateral triangle or a square. Next, 
each side of the base triangle or square may be partitioned into (2k + 1) segments of 
equal size, k > 1, consecutively numbered 1,2, . . . ,2k  + 1, and the replication process 
should be implemented on the even-numbered segments. Parenthetically, we note that 
partitioning into an even number of segments would lead to the evolution of multiply 
connected curves. 

We will now compute the fractal dimension Dn,k, the perimeter Pr,n,k and the 
enclosed area Ar.n,k of the generalised Koch curves for r = 1,2, .  . . , n = 3,4  and k = 
1,2, .  . . . Let us consider, first, the case in which the basic polygon is an equilateral 
triangle ( n  = 3). For a given k, the number of the straight-line segments making up 
the curve at the rth stage is ( k  + 1 + 2k) times that of the line segments making up the 
curve at the ( r -  11th stage, but which are ( 2 k + l )  times smaller in size. Hence, the 
fractal (similarity) dimension of the Koch curve turns out to be D3,k = 
log(3k+ l)/log(2k+ l ) ,  which is a number greater than unity. At the same time, the 
perimeter Pr,3,k is related to P0,3,k by the relation 

P r , 3 . k =  [ (3k+1) / (2k+ l)IrPO,3,k 
from where it is obvious that for a given (2k+ 1)-equisectioning, the perimeter grows 
unboundedly with r. The area at the rth stage, however, is 

1+3k(3k+l ) - - ’  (3k+1)‘(2k+l)-*’  
i ~ ( I . 2 ,  ..., r }  

which, in the limit r + 00, goes to Aac,3,k = Ao,3,k4( k +  1)(4k+ l)-’. 
Finally, let us consider the case in which the basic polygon is a square ( n  = 4). For 

a given k, the number of the straight-line segments making up the curve at the rth 
stage is (k + 1 + 3k) times that of the line segments making up the curve at the ( r  - 1)th 
stage, but which are also ( 2 k +  1) times smaller in size. Hence, the fractal (similarity) 
dimension of the Koch curve turns out to be D4,k = log(4k + l)/log(2k + l ) ,  which is 
a number greater than unity. At the same time, the perimeter Pr,4,k is related to P0,4,k 
by the relation 

P r , 4 , k  = [ (4k+ 1)/(2k+1)IrPO,4,k 
from where it is clear that the perimeter grows unboundedly with r. The area at the 
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rth stage, however, is 

) Ar,4,k = A0,4,k 1 +4k(4k+  1)-’ c (4k+ 1)’(2k+ 1)-zi ( i s {  1.2. ..., r )  

which, in the limit r + O3, goes to Am,4,k = A0,4,k( k + 1)k-I. Shown in figure 1 are two 
samples of the Koch curves generated on a base square; the effect of the specific value 
of k selected is all too apparent. 

In figure 2 we have plotted the computed values of Dn,k and Am,n,k/AO,n,k for n = 3, 
4 and k = 1,2 ,  . . . , 15. From this figure it is clear that as k-. 03, D n , k  + 1, as should be 
expected. In that limit, the sides of the base n-gon would appear simply to gain some 
thickness as r increases. Furthermore, A,,n,k/Ao,n,k for both values of n also tend to 
unity as k increases, which also supports that conclusion. 

The Koch curves described so far are rigorously self-similar in that they possess 
fixed similarity dimensions. Because of the (2k+ 1)-sectioning of the sides of a given 
curve, however, the generation process can be easily modified to yield self-affine Koch 
curves. The differences between self-similarity and self-affinity have recently become 
topics of research and we refer the interested reader to Mandelbrot (1985) and Lakhtakia 
et a1 (1986) for discussion. Here, we will confine ourselves to giving an algorithm for 
generating ‘randomised’ Koch curves. In order to do so, we begin with either a base 

Figure 1. Two samples of the Koch curves generated on a base square with different values 
of k. 
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Figure 2. Computed values of ( a )  Dn,k and ( b l  Am,n,k/Ao,,r.L for n = 3 , 4  against k for the 
generalised Koch curves. 

equilateral triangle or a square and carry on the generating procedure described above; 
the exception being that the selected value of k for the ( 2 k +  1)-sectioning of the sides 
of the curve of stage r may not be a constant, depending, instead, on the stage r itself. 
In figure 3, a simple example of such a ‘randomised’ Koch curve is shown which starts 
from a base square; k =  1 for r = O , 2 ,  and k = 2  when r =  1. Although due to the 
resolution limitations of the Macintosh Plus monitor and the MacDraw software, the 
generation process could not be carried on for long enough, it should be noted that 
the generated curve appears to have traits inherited from both of the examples shown 
in figure 1. 

The visual similarity between figures 1 and 3 and crystal morphologies for cubic 
crystals, such as lead sulphide prepared under a range of gel preparation conditions 
(Garcia-Ruiz 1986), is striking. That the evolution of the morphologies (from dendrites 
to cubes) can result from the ordered aggregation of small cubic building blocks, as 
seen directly by scanning electron microscopy, suggests that the methods described 
above could have direct application. In particular, it has been shown (Gracia-Ruiz 
1986) that, as the lead sulphide crystals grow, there is a change in the pH of the gel 
growth medium which leads to a continuous change in the stacking of the ‘block 
nuclei’. This same growth mechanism has also been inferred for potassium chloride 
crystals grown from solution (Glasner and Tassa 1974a, b). 

This research was supported in part by the US Air Force Office of Scientific Research 
under Grant no AFOSR-84-0149. 
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Figure 3. A 'randomised' Koch curve generated on square ( n  = 4) at stage r = 3. The sides 
of the curve are (i) three-sectioned when r = O ,  ( i i )  five-sectioned when r = l  and (i i i )  
three-sectioned when r = 2. 
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